
CPS311 Lecture: CPU Implementation: Data Paths

Last revised August 13, 2021
Objectives:

1. To show how a CPU is constructed out of a clock, datapaths, and a control unit.
2. To discuss typical components of the datapaths
3. To show how a mips-like machine could actually be implemented using digital

logic components already seen

 Materials:

1. Projectables
2. smips and mmips demo programs
3. Handout showing RTL for single cycle simulation and for multicycle
4. Handout program that demonstrates different types of instruction
5. Demo file for the above on Single Cycle simulation
6. Circuit Sandbox simulations from CPU Builtins Lecture
7. Additional Circuit Sandbox simulations: General shifter, Comparator

I. Introduction

A. For the last several weeks, we have been focussing on computer architecture.
Today (and in fact for the rest of the course) we turn out attention to computer
organization. What is the difference in meaning between these two terms?

ASK

1. Computer architecture refers to the functional characteristics of the
computer system at the ISA level, as seen by the assembly/machine
language programmer (or the compiler that generates assembly/machine
language code), as the case may be.

2. Computer organization refers to the physical implementation of an ISA.

3. Historically, significant architectures have had numerous
implementations, often over a period of decades.

1

a) IBM mainframe architecture - first developed with System 360 in mid 1960’s
- still being used (with modifications) in machines manufactured today.

b) DEC PDP-8 architecture - first developed in late 1960’s - last
implementation in 1990. (Went from minicomputer with CPU realized
as discrete chips to microprocessor).

c) x86 architecture - first used in 80386 family in mid-1980’s; the 64-bit
chips used in virtually all PCs are still backwards compatible with this
architecture.

B. Of course, a complete computer system consists of a CPU, Memory, and IO
facilities - possibly all on the same chip in embedded systems, or on multiple
chips. For a while, we will focus on the CPU - we will address memory and IO
later. In early computers. the CPU was built up out of multiple discrete
components, but today the CPU is a single chip, and multicore computers have
several CPU's on a single chip. However, we will look at the internals of the CPU
in terms of digital devices we have discussed earlier such as gates, flip flops,
multiplexers etc - realizing that today these are all realized on a single chip.

C. To try to develop in any detail the implementation of a contemporary CPU is
way beyond the scope of this course - and also way beyond the scope of my
knowledge, in part because manufacturers don’t publish all the details about
their implementations - for obvious reasons! Instead, we will focus on some
hypothetical implementations of a subset of the MIPS ISA - which is relatively
simple, and for which published information actually is available. (The
original designers of MIPs have a written a textbook which discusses this and
have made details widely available - many of which are used in our text!)

1. It should be understood from the outset that the implementations presented here
are definitely NOT the structure of an actual MIPS implementation.

2. For pedagogical reasons, the implementations presented in this lecture are
quite different from the way MIPS is actually implemented. (One we will
present later in the course is much closer to the actual implementation, but
is still much simpler.)

2

3. The implementations we will present does not support a number of
features of the MIPS ISA - though these could be added at the cost of
additional complexity.

(a)The hi and lo registers, and multiply and divide instructions.

(b)Support for coprocessors, including floating point instructions.

(c)Kernel-level functionality, including interrupt/exception handling.

(d)The distinction between signed and unsigned arithmetic - we will do
all arithmetic as signed.

(e)Byte and halfword memory operations.

4. The implementations we will present do not include some efficiency “tricks”.

D. Throughout the course, we have been making use of a fundamental principle
in computer science: the notion of levels of abstractions. Recall the levels
diagram we looked at early in the course.

Level Language(s)

HLL Programming Python, Java, C etc.

Architecture Machine Language specified
by an ISA

MicroArchitecture RTL

Building Blocks Devices such as Adders,
Registers, MUXes, Memories etc.

Digital Components Gates, Flip-Flops, Memory Cells

Physical Realization Electronics, Physics

PROJECT

3

1. Early in the course we looked at Digital Components (Gates etc.) and then
saw how they could be combined in various Building Blocks.

2. More recently, we have been lookng at the ISA level.

3. Today, and for several weeks, we look at the MicroArchitecture/RTL
level.

E. A CPU can be regarded as having the following overall structure:

PROJECT

1. The portion on the right (the datapaths) contains the visible registers that
an assembly/machine language programmer sees - e.g. the PC and 32
general registers in MIPS. It also contains an arithmetic-logic unit and
data paths that perform required operations on the registers - e.g. adding
two registers. It may also contain other registers needed for the
implementation as well. This portion will be our focus in this lecture and
the next.

2. The clock generates a regular series of pulses that synchronize state
changes in the registers. Its output looks like this:

CPU
Clock

Control Unit DatapathsControl Signals
(called the
control word)

To/from
Memory and IO

4

or perhaps this:

PROJECT

a) The frequency of the clock dictates the overall speed of the system.

(1)For example, if a computer is reported to use a CPU with a 2 GHz
clock, it means that there are 2 billion clock cycles per second - so
each cycle takes 1/2 nanosecond.

(2)The maximum clock frequency possible for a given system is
dictated by the propagation delays of the gates comprising it. It
must be possible for a signal to propagate down the most time-
consuming path in not more than one clock cycle.

(3)Most systems are engineered conservatively, in the sense that the
clock frequency is actually slightly slower than what might actually
be possible. This allows for variations in component manufacture,
etc. It also leads to the possibility of overclocking a given CPU as a
(somewhat risky) performance-improvement “trick”.

b) The various registers comprising the system are synchronized to the
clock in such a way that all state changes take place simultaneously, on
one of the edges of the clock.

one cycle

one cycle

5

(1)With a few exceptions we will note later, all the registers receive
the same clock signal, but each has a load enable bit in the control
word that specifies whether or not that register changes state on the
clock.

(2)In the examples we will be developing, we will assume that all
state changes take place on the falling edge of the clock. This
differs from the discussion in the book, in which state changes take
place on the rising edge of the clock. (The motivation for this is
that it is consistent with the flip flop chips we have used and will
use in alb.)

(3)In some systems (including most mips implementations), while
most state transitions take place on one edge, there are some
transitions that occur on the other edge. This allows certain
operations to be allocated 1/2 a cycle of time. (But more on this
later - for now we ignore this possibility.)

3. The control unit generates control signals that control the operations
taking place in the datapaths.

a) This includes things like signals that control what computation the
ALU does (add, subtract, and, or ...); load enables to the registers that
determine whether a register will change state on the next clock pulse,
etc.

b) The set of control signals, together, is sometimes called the control
word.

c) A new control word is generated prior to each clock pulse, specifying
what operations are to be performed on that clock pulse.

d) We will consider the implementation of the control unit portion of the
CPU in a subsequence series of lectures.

6

II.The Datapaths

A. This portion of the CPU includes the circuitry for performing arithmetic, and
logic operations, plus the user visible register set and special registers that
connect to the Memory and IO systems. The actual structure of this part of
the CPU as physically implemented is usually not identical to that implied by
the ISA.

1. The actual physical structure that is implemented is called the
microarchitecture.

2. The microarchitecture must, of course, include components that
correspond to the various parts of the system that appear in the ISA (e.,g.
the registers). We call this the architectural state.

3. The microarchitecture usually includes registers that do not appear in the
ISA. We call these the non-architectural state.

4. It is common today to find CPU’s that have a CISC ISA being
implemented by a RISC microarchitecture (RISC core) We will not,
however, pursue this topic since things can get quite complex!

B. The book discusses two implementations of the MIPS ISA: a single cycle
implementation and a multicycle one.

1. We will develop an implementation similar to the first of these, based on a
software simulation that will make it possible to observe the internal
processes in detail.

2. We will introduce a multicycle implementation later, will discuss how the
control unit for it is implemented, and will use it as part of our transition
to considering the pipelined implementation which is much closer to the
way actual MIPS implementations are structured.

C. The following is a block diagram of the Datapaths for the MIPS simulated
implementation we will be discussing today.

7

PROJECT smips.jar

1. The Instruction Register (IR) holds the instruction currently being
executed. It is part of the non-architectural state, since it is not directly
visible in the ISA (and another implementation may handle it differently.)
It is utilized by the control unit to determine what operations need to be
performed, but also provides some information to the ALU and registers,
such as fields that select rs, rt, and rd registers and constants used for I
and J format instructions.

a) On each clock, it is loaded with an instruction to be executed.

b) During the interval between clock signals, it holds the instruction that
is being executed.

c) On the next clock, the machine state is updated as required by the
instruction.

d) Also, on this same clock the next instruction to be executed is loaded into it.

8

2. The Program Counter (PC) is part of the architectural state. It holds the
address of the next instruction to be executed. It can be updated in one of
four ways as determined by the MUX below it.

a) Its current value plus 4.

b) The value of the rightmost 16 bits of the IR - multiplied by 4 and sign
extended (used for beq/bne)

c) The value of the rightmost 26 bits of the IR - multiplied by 4. (used
for j, jal)

d) The value in the register specified by the rs field of the current
instruction (used for jr, jalr).

3. The Register Set (lower left corner) holds the 32 general registers visible
to the assembly/machine language programmer or the compiler.

a) It has two outputs (at the top) that go to the ALU - and one also goes to
the memory. The outputs carry the values specified by the rs and rt
fields of the instruction in the IR.

b) It has one input (at the bottom) which provides the new value to be
loaded into one of the registers in the last step of certain instructions.
There is a single load enable for the register set as a whole, which is
passed on only to the selected register.

4. The ALU (upper left corner) performs various primitive operations on 32-
bit values - e.g. add, subtract, and, or ...

a) It has two input (at the bottom) that contain the values to be operated
on. (For some operations only the left value is used - the right is
ignored.)

9

(1)A MUX determines whether the left input value comes from a
register in the register set (the one specified by rs) or the PC.

(2)Another MUX determines whether the right input value comes
from a register in the register set (the one specified by rt) or from
the immediate value field of the current instruction - or the
immediate value sign-extended.

b) The operation it performs is specified by bits in the control word and/
or the funct field of the instruction currently being executed,

c) It has one output. After a delay for signal propagation through the
various gates in the input MUXes and ALU, it will contain the result
of applying the specified operation to the input(s).

5. The Memory, though not part of the CPU per se, is shown because data
flows to/from it from the portion we are focussing on.

a) It needs to be able to do two different things at the same time:

(1)Read an instruction from a memory address specified by the PC.

(2)Read or write a data item at an address computed by adding a
register and a 16 bit immediate value that is part of an lw or sw
instruction.

b) To accomplish this, it has two distinct ports, each of which has address
and data lines.

(1)Its instruction port receives an address from the PC, and sends data
to the IR.

(2)Its data port receives a computed address from the ALU. It can
either send data to the register set (for lw), or receive data from the
register set (for sw).

10

6. One comparator is used to compare the rs and rt registers in the register
set for equality. This comparator produces a result of 1 if the registers are
equal and 0 if they are not.

7. The small rectangles below the register set, ALU, and PC are MUXes that
allow one of several inputs to be selected (as specified by the control unit.)
(The line in the MUX indicates which source of input is currently selected.).

The small "+" and "*" boxes feeding into the MUXes are adders or
multipliers (left shift two places). The boxes labeled "extend" are sign
extenders - converting a 16 bit value into 32 bits by replicating the sign of the
16 bit value into the bits of the upper half.

8. The lines connecting the various components are data paths along which
data can flow from one component to another.

a) In most cases, they are 32 bits wide, drawn as a single line.

b) They are always one-way (note the arrow heads).

c) In the simulation, they are shown in red if the are currently active, and
black if they are not.

III.RTL

A. The operations performed in the Datapaths to execute the various instructions in
the ISA are specified by a notation known as Register Transfer Language (RTL).

DISTRIBUTE RTL example program using all instructions For now, we will
look only at single cycle version on page 1

B. DEMO using smips.jar

1. Load sample program into memory

2. Set initial values in registers to r1 = 1, r2 = 2, r3 = 3

11

3. Open disclosure triangle on IR.

4. Walk through program instruction by instruction, showing correlation
between data paths and RTL

5. For add, addi note how destination register changes on clock at end

6. For sw note how memory location 1000 has been updated after clock

7. For lw note how destination register changes on clock at end

8. For beq

a) Note how register outputs are set up to compare

b) Note how datapaths are set up to compute target address as PC + 4 *
immediate (in PC adder, not ALU)

c) Note that PC will not be updated until clock - at same time instruction is
fetched - so the instruction fetched will not be the branch target - it will be
the physically next instruction.

9. For nop

a) Note how op-code 0 is actually an R-Type instruction that stores a result
in $0 - hence it is vacuous.

b) Note how PC is the branch target from the previous beq

10.Note how bne is not done since registers actually are equal

11.For j

a) Note how datapaths are set up to compute target address as 4 * immediate

12

b) Note that PC will not be updated until clock - at same time instruction is
fetched - so the instruction fetched will not be the jump target - it will be
the physically next instruction.

12.For jal

a) Note how datapaths are set up to compute target address as 4 * immediate

b) Note that PC will not be updated until clock - at same time instruction is
fetched - so the instruction fetched will not be the jump target - it will be
the physically next instruction.

c) Note how $31 contains the address of the instruction just after the jal

13.Note infinite loop at end involving bne and nop.

IV.Building the Datapaths from Building Blocks at next level down

A. Review building blocks from earlier lecture

DEMO and review CircuitSandbox implementation of each

1. Adders

2. Decoders

3. Multiplexers

4. Registers

5. Shifters

13

B. Implementation of Individual Registers.

1. A 32-bit register - such as the ones in the Register Set, the PC and the IR -
can be realized using 32 copies of the register bit circuit - all sharing a
common enable (and clear if needed).

2. The data in bits connect to the data path going into the register, and data
out to the data path going out of the register (each 32 bits wide in the case
of mips).

3. As we have already noted, all the register flip flops (over 1000 of them in
mips) are connected to the clock. Thus, all the flip flops load a value on
each clock. However, the MUX at the input can arrange for this to either
be a copy of the current value (hence no change) or an input coming in.
Since the load enables for all the flip flops in a given register are
connected together - when it is 0, the register retains it value; when 1, the
register loads a new value from the 32-bit input data path.

Review CSB Register Demo

C. Implementation of the IR is straightforward - it is just a simple register, with
the inputs connected to the memory, the outputs controlling various
functions - and going to the control unit - and the load enable is always 1
(which, in this simulation, is actually done at the end of executing the
previous instruction.)

D. Implementation of the register set.

1. The register set contains 32 registers, each composed of 32 flip-flop/MUX
pairs - (except for $0, where all of the bits can simply be 0)

2. The register set furnishes three outputs - two to the ALU and one to
memory - controlled, respectively, by the rs, rt, and rt fields of the current
instruction. Each output can be realized by 32 MUXes, each with 32 data
inputs and 5 selection inputs.

For example, the left most (rs) output may look like this

14

PROJECT

3. The corresponding data inputs of each register may be connected to the
data input to the register set - e.g. bit 31 of each of the registers ($1..$31)
may all be connected to data input bit 31, etc.

4. The enables of each register may be connected to a 1 out of 32 decoder
that selects which bit gets loaded based on a 5 bit value (either the rt or rd
field of the current instruction.) - e.g.

PROJECT

Overall
enable

to enables of all bits of
$31 $30 $29 $28 $3 $2 $1 (NC)

One out of 32 decoder

rt or rd field IR
(depends on opcode)

15

rs field
of IR

output
bit 31

$31 $30 ... $1 0
(bit 31 of each)

output
bit 30

$31 $30 ... $1 0
(bit 30 of each)

output
bit 1

$31 $30 ... $1 0
(bit 1 of each)

output
bit 0

$31 $30 ... $1 0
(bit 0 of each)

...1 out of 32 MUX 1 out of 32 MUX 1 out of 32 MUX 1 out of 32 MUX

5. Thus, the operation of the register set is controlled by the rs, rt, and rd
fields of the current instruction plus a single load-enable bit of the control
word!

PROJECT

16

rs of
IR

32 bit wide

1 out of 32 MUX

$31

32 bit wide

1 out of 32 MUX rt of

IR

$30 $29 $1 All 0's

rt or rd
of IR 1 out of 32

Decoder

To ALU Input MUXes
32 32

3232
3232

32
32

32
32

32
32

32

Register set

load enable

Register
set

data in

...

E. The ALU of MIPS performs one of 10 different operations on two 32 bit
input values to produce a 32 bit result - with some additional variations for
the shifts. It might implemented by 32 copies of a circuit consisting of a
MUX plus appropriate gates/gate networks for each function.

1. The ALU needs to be capable of performing the following operations

Output ← A + B
Output ← 1 if A < B (slt)
Output ← A & B
Output ← A | B
Output ← A ^ B
Output ← B << 16
Output ← A (B ignored)
Output controlled by funct field of IR (numerous possibilities)

2. Thus, a typical bit (replicated 32 times) might look like this:

PROJECT

...

Output

+
to
next

from
previous
bit

Inputs

MUX

17

3. ALU shifters that shift left or right an arbitrarily-specified number of places (to
support instructions like shl, shr, ashl, and their "v" versions) can be built using
multiplexers.

DEMO CSB General Shifter

a) Observe that it has an 8 bit input through the switches on the bottom and
provides an 8 bit output through the LEDs on the top. (It could be built with
any number of inputs and outputs - e.g. the ALU of mips contains a 32 bit
shifter but producing such a demo would be a lot of work!

b) It has three control inputs on the left. Discuss details below only if time
allows

(1)If all control inputs are off, the value input value is passed through
unchanged to the output.

DEMO

18

(2)If the first (lower) control input is on, the value input is shifted left one
place to the left.

DEMO

(3)If the second (middle) control bit is on, the value input is shifted two
places to the left.

DEMO

(4)If the first and second control bits are on, the value input is shifted three
places to the left.

DEMO

(5)If the third (upper) control bit is on, the value input is shifted three places
to the left.

DEMO

(6)What will happen if the just first and third control bits are on?

ASK

DEMO

(7)What will happen if all three control bits are on?

ASK

DEMO

(8)Observe that if just the first (lower) control bit is on, the input is shifted
left one place; if just the second control bit is on, the input is shifted left
two places, and if just the third control bit is on, the input is shifted left
four places.

What pattern do you see?

ASK

19

If we added another row of multiplexers following the same pattern, how
much of a shift do you think their control bit would cause?

ASK

(9)Observe that, if we numbered the control bits 0, 1, 2, they would
correspond to a shift of 20 , 21 and 22 places respectively.

c) Of course, the same approach could be used to build other kinds of shifters.

(1)A shifter that shifts any number of places (just more rows of muxes)

(2)A shifter that shifts right instead.

(3)A shifter that does arithmetic right shifts (shift a copy of the sign, rather
than 0, into the leftmost bit(s)).

d) We could also use 4 way multiplexers with two selection bits to implement
the shifter with half the multiplexers.

20

F. A typical bit of the PC could be implemented like this:

PROJECT

1. Adding + 4 is achieved by hard-wiring the second input of bit 2 of the
adder to be 1, and all others to be 0.

2. Scaling of constants from the IR is done by shifting - e.g. bit 0 from the IR
goes to the MUX/flip flop for bit 2, bit 1 from the IR goes to bit 3, etc.
Bits 0 and 1 always receive 0. For j/jal, bits 31..28 receive the bit in the
corresponding position in the PC, since the constant is 26 bits shifted left
two places to produce a 28 bit constant.

3. The adders for PC+4 and adding the I constant receive carry from the
previous bit and pass carry to the next bit, indicated by the arrows going
into and out of the adders.

4. Actually, since the PC must always contain a multiple of 4, it is not
necessary to implement the two low order bits as flip-flops; they can
simply be hardwired to 0.

1 out of 4
 MUX

Flip-Flop with
parallel load
capability

Load enable
From
IR J
Constant

PC Source selection
(2 bits)

(See
discussion)

Address
to memory
system

From
IR I
Constant

21

G. The rs/rt comparator for equality could be implemented by 32 xor gates that
compare each pair of bits and a nor gate which outputs a 0 just when any
pair of corresponding bits differ.

DEMO: CSB Comparator

22

V. Multi-Cycle Implementation

A. Though the implementation just developed works reasonably well for MIPs,
there are serious practical issues that arise in many cases.

1. Timing issues

a) Recall that physical devices need some amount of time for performing an
operation - therefore, there is a finite delay between the time the input to a
device changes and the time the output of the device is correct.

b) Since the input of an operation is often the output of the previous
operation, clock rate is limited by the time needed for all the
operations in a sequence to be executed. Since the clock rate is not
dependent on what instruction is being executed, the limit turns out to
be the longest time for any instruction.

MIPS Example: After it is fetched, an lw instruction performs the
following operations, each of which depends on the result of the one
just before.

(1)Add register specified by IR and constant in IR in ALU

(2)Fetch data from memory from address specified by ALU output

(3)Store value fetched into a register

DEMO: smips simlation

(a) Put put 8c021000 into memory location 0

(b)Reset

(c) Open disclosure triangle on IR

(d)Enable injection of delay and set delay to 1388 (=5 ms)

(e) Clock and note steps

23

c) While this is not a major issue with MIPs since all instructions encounter
similar logic delays, it can be a significant issue for architectures where
instruction times vary widely - e.g. on a machine having multiply as a
regular instruction a multiply takes much longer than an add.

2. Multiple use of functional units issues

a) On MIPs, the data memory and ALU are used just at most once per
instruction.

b) But some machines may use these units more than once on some
instructions.

Example; A one-address machine using an address mode like
displacement mode on an add instruction may use the ALU once to
calculate the address and again to perform the addition.

3. Instructions that contain loops.

Example: The x86 architecture includes several instructions that operate
on character strings, such as copying or comparing them. These
instructions perform a single computation for each character in the
string(s) involved - with the number of computations needed being
dependent on the length of the string.

B. To address issues like this, it is possible to break an instruction into smaller
steps, and execute the instruction as a series of individual steps. This uses
multiple clock cycles - but if the steps are made small enough, the overall
time (number of steps * clock length) is not much more than the single cycle
time for short instructions, and can easily vary from instruction to instruction
so that some instructions complete in fewer cycles than others.

(Actually, for MIPS doing this will actually make execution time for an
instruction worse - but this is a precursor to a strategy known as pipelining
we will discuss in a few days, which is several times faster.)

24

C. Consider a MIPs implementation using this idea. Again, this is not the way
MIPs is actually implemented, but it will help us understand how it actually
is!

1. Each instruction will use exactly 4 cycles:

a) Fetch the instruction from memory and - at the same time - add 4 to
the PC

b) Decode and get needed ALU operands and - at the same time in the
case of a jump/branch instruction - update the PC to the target address.

To make this work, we'll need two input registers for the ALU to hold
the operands for the next step.

c) Perform ALU operation.

To make this work, we'll need an output register for the ALU to hold
the result for the next step.

d) One of the following

(1)Store computed result into a register

(2)Read from memory location specified by computed result and put value
read into a register

(Note: this combines two steps from the example in the book, since only
one type of instruction needs two steps here - so I "fudged" a bit!)

(3)Write a register into memory location specified by the computed
result

D. Refer to page 2 of RTL handout - multicycle implmentation; then go through
same program as done earlier. Note that each instruction executes in four
clocks.

25

E. DEMO with mmips.jar.

1. Set for hardwired control

2. Put 1 in $1, 2 in $2, and 3 in $3

3. Use most instructions program.

4. Note that ALU input and output registers are updated on clock at end of
cycle!

5. Note that no need for delayed branch/jump - this has gone away for now,
but will return when we get to pipelining!

VI.Controlling the Operation of the Data Paths - COVER AT START OF
CONTROL UNIT LECTURE IF NECESSARY

A. In our discussion of how the various parts of the data portion of the CPU are built,
we've noted that the specific operations performed are controlled by various bits
of the control word. Let's pull these all together. It turns out that we need just 17
control bits to control everything - all based on the content of the IR!

B. SWITCH DEMO TO MANUAL CONTROL, AND SHOW EACH

1. Three bits (shown as checkboxes on the simulation's manual input panel)
disable/enable the loading of a particular register on a clock pulse.

a) One bit to control whether a register in the register set is loaded.
(Often true on Cycle 3 - but not always)

b) One bit to control whether the IR is loaded. (True only on Cycle 0)

c) One bit to control whether the PC is loaded. (True only on Cycle 0,
but sometimes also elsewhere)

26

d) The ALU input and output registers are always updated on every
clock - ignored when not needed, so value loaded is irrelevant.

2. Two bits control whether a memory read or write is done (cannot both be
true at the same time, of course - but often are both false).

3. One bit to control where the address of a memory location to be read or
written comes from (the PC or a value calculated in the ALU).

4. Several bits control what is loaded into a given register.

a) 2 bits to control the updating of the PC (PC + 4, branch, or jump) -
one possibility unused.

b) 1 bit to control the left source to the ALU (register specified by rs or
PC)

c) 2 bits to control the right source to the ALU (register specified by rt or
immediate constant or sign-extended immediate constant) - one
possibility unused.

d) 1 bit to control where a new value to be loaded into a register comes
comes from - the output of the ALU or memory.

5. 2 bits to control which register in the register set is loaded (determined by
rd field of instruction, determined by the rt field, or register 31 (required
for JAL))

6. 3 bits to determine the operation performed in the ALU along with the
funct field in the instruction. (For the immediate instructions, the funct
field in the instruction is actually part of the constant.)

27

