
CPS311 Lecture: CPU Implementation: Data Paths

Last revised August 13, 2021
Objectives:

1. To show how a  CPU is constructed out of a clock, datapaths,  and a control unit.
2. To discuss typical components of the datapaths
3. To show how a mips-like machine could actually be implemented using digital 

logic components already seen

 Materials: 

1. Projectables 
2. smips and mmips demo programs
3. Handout showing RTL for single cycle simulation and for multicycle
4. Handout program that demonstrates different types of instruction
5.  Demo file for the above on Single Cycle simulation
6. Circuit Sandbox simulations from CPU Builtins Lecture
7. Additional Circuit Sandbox simulations: General shifter,  Comparator

I. Introduction

A. For the last several weeks, we have been focussing on computer architecture.  
Today (and in fact for the rest of the course) we turn out attention to computer 
organization.  What is the difference in meaning between these two terms? 
 

ASK 

1. Computer architecture refers to the functional characteristics of the 
computer system at the ISA level, as seen by the assembly/machine 
language programmer (or the compiler that generates assembly/machine 
language code), as the case may be. 

2. Computer organization refers to the physical implementation of an ISA.

3. Historically, significant architectures have had numerous 
implementations, often over a period of decades.
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a) IBM mainframe architecture - first developed with System 360 in mid 1960’s 
- still being used (with modifications) in machines manufactured today.

b) DEC PDP-8 architecture - first developed in late 1960’s - last 
implementation in 1990.  (Went from minicomputer with CPU realized 
as discrete chips to microprocessor).

c) x86 architecture - first used in 80386 family in mid-1980’s; the 64-bit 
chips used in virtually all PCs are still backwards compatible with this 
architecture.  

B. Of course, a complete computer system consists of a CPU, Memory, and IO 
facilities - possibly all on the same chip in embedded systems, or on multiple 
chips.  For a while, we will focus on the CPU - we will address memory and IO 
later.  In early computers. the CPU was built up out of multiple discrete 
components, but today the CPU is a single chip, and multicore computers have 
several CPU's on a single chip.  However, we will look at the internals of the CPU 
in terms of digital devices we have discussed earlier such as gates, flip flops, 
multiplexers etc - realizing that today these are all realized on a single chip.

C. To try to develop in any detail the implementation of a contemporary CPU is 
way beyond the scope of this course - and also way beyond the scope of my 
knowledge, in part because manufacturers don’t publish all the details about 
their implementations - for obvious reasons!  Instead, we will focus on some 
hypothetical implementations of a subset of the MIPS ISA - which is relatively 
simple, and for which published information actually is available.  (The 
original designers of MIPs have a written a textbook which discusses this and 
have made details widely available - many of which are used in our text!)

1. It should be understood from the outset that the implementations presented here 
are definitely NOT  the structure of an actual MIPS implementation.

2. For pedagogical reasons, the implementations presented in this lecture are 
quite different from the way MIPS is actually implemented.  (One we will 
present later in the course is much closer to the actual implementation, but 
is still much simpler.) 
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3. The implementations we will present does not support a number of 
features of the MIPS ISA - though these could be added at the cost of 
additional complexity.

(a)The hi and lo registers, and multiply and divide instructions.

(b)Support for coprocessors, including floating point instructions.

(c)Kernel-level functionality, including interrupt/exception handling.

(d)The distinction between signed and unsigned arithmetic - we will do 
all arithmetic as signed.

(e)Byte and halfword memory operations.

4. The implementations we will present do not include some efficiency “tricks”.

D. Throughout the course, we have been making use of a fundamental principle 
in computer science: the notion of levels of abstractions.  Recall the levels 
diagram we looked at early in the course. 
 
Level Language(s) 
 
HLL Programming Python, Java, C etc. 

 

Architecture Machine Language specified 
by an ISA 

 

MicroArchitecture RTL 
 

Building Blocks Devices such as Adders, 
Registers, MUXes, Memories etc. 

 

Digital Components Gates, Flip-Flops, Memory Cells 

 

Physical Realization Electronics, Physics 
 

 
PROJECT
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1. Early in the course we looked at Digital Components (Gates etc.) and then 
saw how they could be combined in various Building Blocks.

2. More recently, we have been lookng at the ISA level.

3. Today, and for several weeks, we look at the MicroArchitecture/RTL 
level.

E. A CPU can be regarded as having the following overall structure: 

 

 
 

PROJECT 

1. The portion on the right (the datapaths) contains the visible registers that 
an assembly/machine language programmer sees - e.g. the PC and 32 
general registers in MIPS.  It also contains an arithmetic-logic unit and 
data paths that perform required operations on the registers - e.g. adding 
two registers.  It may also contain other registers needed for the 
implementation as well.  This portion will be our focus in this lecture and 
the next. 

2. The clock generates a regular series of pulses that synchronize state 
changes in the registers.  Its output looks like this: 
 

CPU
Clock

Control Unit DatapathsControl Signals
(called the
control word)

To/from 
Memory and IO
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or perhaps this: 

 

 

 

PROJECT

a) The frequency of the clock dictates the overall speed of the system.   

(1)For example, if a computer is reported to use a CPU with a 2 GHz 
clock, it means that there are 2 billion clock cycles per second - so 
each cycle takes 1/2 nanosecond.

(2)The maximum clock frequency possible for a given system is 
dictated by the propagation delays of the gates comprising it.  It 
must be possible for a signal to propagate down the most time-
consuming path in not more than one clock cycle.

(3)Most systems are engineered conservatively, in the sense that the 
clock frequency is actually slightly slower than what might actually 
be possible.  This allows for variations in component manufacture, 
etc.  It also leads to the possibility of overclocking a given CPU as a 
(somewhat risky) performance-improvement “trick”. 

b) The various registers comprising the system are synchronized to the 
clock in such a way that all state changes take place simultaneously, on 
one of the edges of the clock. 

one cycle

one cycle
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(1)With a few exceptions we will note later, all the registers receive 
the same clock signal, but each has a load enable bit in the control 
word that specifies whether or not that register changes state on the 
clock. 

(2)In the examples we will be developing, we will assume that all 
state changes take place on the falling edge of the clock.  This 
differs from the discussion in the book, in  which state changes take 
place on the rising edge of the clock.  (The motivation for this is 
that it is consistent with the flip flop chips we have used and will 
use in alb.) 

(3)In some systems (including most mips implementations), while 
most state transitions take place on one edge, there are some 
transitions that occur on the other edge.  This allows certain 
operations to be allocated 1/2 a cycle of time.  (But more on this 
later - for now we ignore this possibility.)

3. The control unit generates control signals that control the operations 
taking place in the datapaths.

a) This includes things like signals that control what computation the 
ALU does (add, subtract, and, or ...); load enables to the registers that 
determine whether a register will change state on the next clock pulse, 
etc.

b) The set of control signals, together, is sometimes called the control 
word. 

c) A new control word is generated prior to each clock pulse, specifying 
what operations are to be performed on that clock pulse.

d) We will consider the implementation of the control unit portion of the 
CPU in a subsequence series of lectures.  
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II.The Datapaths

A. This portion of the CPU includes the circuitry for performing arithmetic, and 
logic operations, plus the user visible register set and special registers that 
connect to the Memory and IO systems.   The actual structure of this part of 
the CPU as physically implemented is usually not identical to that implied by 
the ISA.

1. The actual physical structure that is implemented is called the 
microarchitecture.

2. The microarchitecture must, of course, include components that 
correspond to the various parts of the system that appear in the ISA (e.,g. 
the registers).  We call this the architectural state.

3. The microarchitecture usually includes registers that do not appear in the 
ISA.   We call these the non-architectural state.

4. It is common today to find CPU’s that have a CISC ISA being 
implemented by a RISC microarchitecture (RISC core)   We will not, 
however, pursue this topic since things can get quite complex!

B. The book discusses two implementations of the MIPS ISA: a single cycle 
implementation and a multicycle one. 

1. We will develop an implementation similar to the first of these, based on a 
software simulation that will make it possible to observe the internal 
processes in detail.

2. We will introduce a multicycle implementation later, will discuss how the 
control unit for it is implemented, and will use it as part of our transition 
to considering the pipelined implementation which is much closer to the 
way actual MIPS implementations are structured.

C. The following is a block diagram of the Datapaths for the MIPS simulated 
implementation we will be discussing today. 

7



  
PROJECT smips.jar 

1. The Instruction Register (IR) holds the instruction currently being 
executed.  It is part of the non-architectural state, since it is not directly 
visible in the ISA (and another implementation may handle it differently.)  
It is utilized by the control unit to determine what operations need to be 
performed,  but also provides some information to the ALU and registers, 
such as fields that select rs, rt, and rd registers and constants used for I 
and J format instructions.   

a) On each clock, it is loaded with an instruction to be executed.  

b) During the interval between clock signals, it holds the instruction that 
is being executed.

c) On the next clock, the machine state is updated as required by the 
instruction.

d) Also, on this same clock the next instruction to be executed is loaded into it.

8



2. The Program Counter (PC) is part of the architectural state.  It holds the 
address of the next instruction to be executed. It can be updated in one of 
four ways as determined by the MUX below it.

a) Its current value plus 4.

b) The value of the rightmost 16 bits of the IR - multiplied by 4 and sign 
extended (used for beq/bne)

c) The value of the rightmost 26 bits of the IR - multiplied by 4.  (used 
for j, jal)

d) The value in the register specified by the rs field of the current 
instruction (used for jr, jalr).

3. The Register Set (lower left corner) holds the 32 general registers visible 
to the assembly/machine language programmer or the compiler.

a) It has two outputs (at the top) that go to the ALU - and one also goes to 
the memory.  The outputs carry the values specified by the rs and rt 
fields of the instruction in the IR.

b) It has one input (at the bottom) which provides the new value to be 
loaded into one of the registers in the last step of certain instructions.   
There is a single load enable for the register set as a whole, which is 
passed on only to the selected register. 

4. The ALU (upper left corner) performs various primitive operations on 32-
bit values - e.g. add, subtract, and, or ...

a) It has two input (at the bottom) that contain the values to be operated 
on.   (For some operations only the left value is used - the right is 
ignored.)
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(1)A MUX determines whether the left input value comes from a 
register in the register set (the one specified by rs) or the PC.

(2)Another MUX determines whether the right input value comes 
from a register in the register set (the one specified by rt) or from 
the immediate value field of the current instruction - or the 
immediate value sign-extended.

b) The operation it performs is specified by bits in the control word and/
or the funct field of the instruction currently being executed,

c) It has one output.  After a delay for signal propagation through the 
various gates in the input MUXes and ALU, it will contain the result 
of applying the specified operation to the input(s). 

5. The Memory, though not part of the CPU per se, is shown because data 
flows to/from it from the portion we are focussing on.

a) It needs to be able to do two different things at the same time:

(1)Read an instruction from a memory address specified by the PC.

(2)Read or write a data item at an address computed by adding a 
register and a 16 bit immediate value that is part of an lw or sw 
instruction.

b) To accomplish this, it has two distinct ports, each of which has address 
and data lines.

(1)Its instruction port receives an address from the PC, and sends data 
to the IR.

(2)Its data port receives a computed address from the ALU.  It can 
either send data to the register set (for lw), or receive data from the 
register set (for sw).
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6. One comparator is used to compare the rs and rt registers in the register 
set for equality.  This comparator produces a result of 1 if the registers are 
equal and 0 if they are not. 

7. The small rectangles below the register set,  ALU, and PC are MUXes that 
allow one of several inputs to be selected (as specified by the control unit.)  
(The line in the MUX indicates which source of input is currently selected.).   
 

The small "+" and "*" boxes feeding into the MUXes are adders or 
multipliers (left shift two places).  The boxes labeled "extend" are sign 
extenders - converting a 16 bit value into 32 bits by replicating the sign of the 
16 bit value into the bits of the upper half. 

8. The lines connecting the various components are data paths along which 
data can flow from one component to another.

a) In most cases, they are 32 bits wide, drawn as a single line.

b) They are always one-way (note the arrow heads).

c) In the simulation, they are shown in red if the are currently active, and 
black if they are not.

III.RTL

A. The operations performed in the Datapaths to execute the various instructions in 
the ISA are specified by a notation known as Register Transfer Language (RTL). 
 
DISTRIBUTE RTL example program using all instructions  For now, we will 
look only at single cycle version on page 1

B. DEMO using smips.jar

1. Load sample program into memory

2. Set initial values in registers to r1 = 1, r2 = 2, r3 = 3
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3. Open disclosure triangle on IR.

4. Walk through program instruction by instruction, showing correlation 
between data paths and RTL

5. For add, addi note how destination register changes on clock at end

6. For sw note how memory location 1000 has been updated after clock

7. For lw note how destination register changes on clock at end

8. For beq

a) Note how register outputs are set up to compare

b) Note how datapaths are set up to compute target address as PC + 4 * 
immediate (in PC adder, not ALU)

c) Note that PC will not be updated until clock - at same time instruction is 
fetched - so the instruction fetched will not be the branch target - it will be 
the physically next instruction.

9. For nop

a) Note how op-code 0 is actually an R-Type instruction that stores a result 
in $0 - hence it is vacuous.

b) Note how PC is the branch target from the previous beq

10.Note how bne is not done since registers actually are equal

11.For j

a) Note how datapaths are set up to compute target address as 4 * immediate
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b) Note that PC will not be updated until clock - at same time instruction is 
fetched - so the instruction fetched will not be the jump target - it will be 
the physically next instruction.

12.For jal

a) Note how datapaths are set up to compute target address as 4 * immediate

b) Note that PC will not be updated until clock - at same time instruction is 
fetched - so the instruction fetched will not be the jump target - it will be 
the physically next instruction.

c) Note how $31 contains the address of the instruction just after the jal

13.Note infinite loop at end involving bne and nop.

IV.Building the Datapaths from Building Blocks at next level down

A. Review building blocks from earlier lecture 
 
DEMO and review CircuitSandbox implementation of each

1. Adders

2. Decoders

3. Multiplexers

4. Registers

5. Shifters
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B. Implementation of Individual Registers.

1. A 32-bit register - such as the ones in the Register Set, the PC and the IR - 
can be realized using 32 copies of the register bit circuit - all sharing a 
common enable (and clear if needed).

2. The data in bits connect to the data path going into the register, and data 
out to the data path going out of the register (each 32 bits wide in the case 
of mips).

3. As we have already noted, all the register flip flops (over 1000 of them in 
mips) are connected to the clock.  Thus, all the flip flops load a value on 
each clock.  However, the MUX at the input can arrange for this to either 
be a copy of the current value (hence no change) or an input coming in.  
Since the load enables for all the flip flops in a given register are 
connected together - when it is 0, the register retains it value; when 1, the 
register loads a new value from the 32-bit input data path. 
 
Review CSB Register Demo 

C. Implementation of the IR is straightforward - it is just a simple register, with 
the inputs connected to the memory, the outputs controlling various 
functions - and going to the control unit - and the load enable is always 1 
(which, in this simulation, is actually done at the end of executing the 
previous instruction.)

D. Implementation of the register set.

1. The register set contains 32 registers, each composed of 32 flip-flop/MUX 
pairs - (except for $0, where all of the bits can simply be 0)

2. The register set furnishes three outputs - two to the ALU and one to 
memory - controlled, respectively, by the rs, rt, and rt fields of the current 
instruction.  Each output can be realized by 32 MUXes, each with 32 data 
inputs and 5 selection inputs. 
 
For example, the left most (rs) output may look like this 
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PROJECT 

3. The corresponding data inputs of each register may be connected to the 
data input to the register set - e.g. bit 31 of each of the registers ($1..$31) 
may all be connected to data input bit 31, etc.

4. The enables of each register may be connected to a 1 out of 32 decoder 
that selects which bit gets loaded based on a 5 bit value (either the rt or rd 
field of the current instruction.) - e.g. 
 

 

PROJECT 

Overall
enable

 

to enables of all bits of
$31 $30 $29 $28 ............. $3  $2  $1  (NC)

One out of 32 decoder

rt or rd field IR
(depends on opcode)
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rs field
of IR

output 
bit 31

$31 $30  ... $1 0
(bit 31 of each)

output 
bit 30

$31 $30  ... $1 0
(bit 30 of each)

output 
bit 1

$31 $30  ... $1 0
(bit 1 of each)

output 
bit 0

$31 $30  ... $1 0
(bit 0 of each)

...1 out of 32 MUX 1 out of 32 MUX 1 out of 32 MUX 1 out of 32 MUX



5. Thus, the operation of the register set is controlled by the rs, rt, and rd 
fields of the current instruction plus a single load-enable bit of the control 
word! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PROJECT
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rs of 
IR

32 bit wide

1 out of 32 MUX

$31

32 bit wide

1 out of 32 MUX rt of 

IR

$30 $29 $1 All 0's

rt or rd 
of IR 1 out of 32 

Decoder

To ALU Input MUXes
32 32

3232
3232

32
32

32
32

32
32

32

Register set

load enable

Register 
set

data in

...



E. The ALU of MIPS performs one of 10 different operations on two 32 bit 
input values to produce a 32 bit result - with some additional variations for 
the shifts.   It might implemented by 32 copies of a circuit consisting of a 
MUX plus appropriate gates/gate networks for each function.  

1. The ALU needs to be capable of performing the following operations 
 

Output ← A + B 
Output ← 1 if A < B (slt) 
Output ← A & B 
Output ← A | B 
Output ← A ^ B 
Output ← B << 16 
Output ← A (B ignored) 
Output controlled by funct field of IR (numerous possibilities)

2. Thus, a typical bit (replicated 32 times) might look like this: 
 

 
PROJECT

 
 

...

Output

+
to 
next

from
previous
bit

Inputs

MUX
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3. ALU shifters that shift left or right an arbitrarily-specified number of places (to 
support instructions like shl, shr, ashl, and their "v" versions) can be built using 
multiplexers. 
 

DEMO CSB General Shifter

a) Observe that it has an 8 bit input through the switches on the bottom and 
provides an 8 bit output through the LEDs on the top.  (It could be built with 
any number of inputs and outputs - e.g. the ALU of mips contains a 32 bit 
shifter but producing such a demo would be a lot of work!

b) It has three control inputs on the left.  Discuss details below only if time 
allows

(1)If all control inputs are off, the value input value is passed through 
unchanged to the output. 

 

DEMO
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(2)If the first (lower) control input is on, the value input is shifted left one 
place to the left.   

 

DEMO

(3)If the second (middle) control bit is on, the value input is shifted two 
places to the left.  

 

DEMO

(4)If the first and second control bits are on, the value input is shifted three 
places to the left.  

 

DEMO

(5)If the third (upper) control bit is on, the value input is shifted three places 
to the left.  

 

DEMO

(6)What will happen if the just first and third control bits are on? 

 

ASK 

 

DEMO

(7)What will happen if all three control bits are on? 

 

ASK 

 

DEMO

(8)Observe that if just the first (lower) control bit is on, the input is shifted 
left one place; if just the second control bit is on, the input is shifted left 
two places, and if just the third control bit is on, the input is shifted left 
four places.  

 

What pattern do you see? 

 

ASK 
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If we added another row of multiplexers following the same pattern, how 
much of a shift do you think their control bit would cause? 

 

ASK

(9)Observe that, if we numbered the control bits 0, 1, 2, they would 
correspond to a shift of 20 , 21 and 22 places respectively.

c) Of course, the same approach could be used to build other kinds of shifters.

(1)A shifter that shifts any number of places (just more rows of muxes)

(2)A shifter that shifts right instead.

(3)A shifter that does arithmetic right shifts (shift a copy of the sign, rather 
than 0, into the leftmost bit(s)).

d) We could also use 4 way multiplexers with two selection bits to implement 
the shifter with half the multiplexers.
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F. A typical bit of the PC could be implemented like this:  
 

 
PROJECT

1. Adding + 4 is achieved by hard-wiring the second input of bit 2 of the 
adder to be 1, and all others to be 0.

2. Scaling of constants from the IR is done by shifting - e.g. bit 0 from the IR 
goes to the MUX/flip flop for bit 2, bit 1 from the IR goes to bit 3, etc.  
Bits 0 and 1 always receive 0.  For j/jal, bits 31..28 receive the bit in the 
corresponding position in the PC, since the constant is 26 bits shifted left 
two places to produce a 28 bit constant.

3. The adders for PC+4 and adding the I constant receive carry from the 
previous bit and pass carry to the next bit, indicated by the arrows going 
into and out of the adders.

4. Actually, since the PC must always contain a multiple of 4, it is not 
necessary to implement the two low order bits as flip-flops; they can 
simply be hardwired to 0.

1 out of 4
 MUX

Flip-Flop with
parallel load 
capability

Load enable
From
IR J 
Constant

PC Source selection 
(2 bits)

(See 
discussion)

Address
to memory
system

From
IR I
Constant
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G. The rs/rt comparator for equality could be implemented by 32 xor gates that 
compare each pair of bits and a nor gate which outputs a 0 just when any 
pair of corresponding bits differ. 

 
DEMO: CSB Comparator
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V. Multi-Cycle Implementation

A. Though the implementation just developed works reasonably well for MIPs, 
there are serious practical issues that arise in many cases.

1. Timing issues 

a) Recall that physical devices need some amount of time for performing an 
operation - therefore, there is a finite delay between the time the input to a 
device changes and the time the output of the device is correct.

b) Since the input of an operation is often the output of the previous 
operation, clock rate is limited by the time needed for all the 
operations in a sequence to be executed.  Since the clock rate is not 
dependent on what instruction is being executed, the limit turns out to 
be the longest time for any instruction. 
 

MIPS Example: After it is fetched, an lw instruction performs the 
following operations, each of which depends on the result of the one 
just before. 

(1)Add register specified by IR and constant in IR in ALU

(2)Fetch data from memory from address specified by ALU output

(3)Store value fetched into a register 
 

DEMO: smips simlation

(a) Put put 8c021000 into memory location 0

(b)Reset

(c) Open disclosure triangle on IR

(d)Enable injection of delay and set delay to 1388 (=5 ms)

(e) Clock and note steps

23



c) While this is not a major issue with MIPs since all instructions encounter 
similar logic delays, it can be a significant issue for architectures where 
instruction times vary widely - e.g. on a machine having multiply as a 
regular instruction a multiply takes much longer than an add.

2. Multiple use of functional units issues

a) On MIPs, the data memory and ALU are used just at most once per 
instruction.   

b) But some machines may use these units more than once on some 
instructions. 
 
Example; A one-address machine using an address mode like 
displacement mode on an add instruction may use the ALU once to 
calculate the address and again to perform the addition. 

3. Instructions that contain loops. 
 
Example: The x86 architecture includes several instructions that operate 
on character strings, such as copying or comparing them.  These 
instructions perform a single computation for each character in the 
string(s) involved - with the number of computations needed being 
dependent on the length of the string.

B. To address issues like this, it is possible to break an instruction into smaller 
steps, and execute the instruction as a series of individual steps.  This uses 
multiple clock cycles - but if the steps are made small enough, the overall 
time (number of steps * clock length) is not much more than the single cycle 
time for short instructions, and can easily vary from instruction to instruction 
so that some instructions complete in fewer cycles than others. 
 
(Actually, for MIPS doing this will actually make execution time for an 
instruction worse - but this is a precursor to a strategy known as pipelining 
we will discuss in a few days, which is several times faster.)
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C. Consider a MIPs implementation using this idea.  Again, this is not the way 
MIPs is actually implemented, but it will help us understand how it actually 
is!

1. Each instruction will use exactly 4 cycles:

a) Fetch the instruction from memory and - at the same time - add 4 to 
the PC

b) Decode and get needed ALU operands and - at the same time in the 
case of a jump/branch instruction - update the PC to the target address. 

 

To make this work, we'll need two input registers for the ALU to hold 
the operands for the next step.

c) Perform ALU operation. 

 

To make this work, we'll need an output register for the ALU to hold 
the result for the next step.

d) One of the following

(1)Store computed result into a register

(2)Read from memory location specified by computed result and put value 
read into a register 
 
(Note: this combines two steps from the example in the book, since only 
one type of instruction needs two steps here - so I "fudged" a bit!)

(3)Write a register into memory location specified by the computed 
result

D. Refer to page 2 of RTL handout - multicycle implmentation; then go through 
same program as done earlier.   Note that each instruction executes in four 
clocks.
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E. DEMO with mmips.jar.  

1. Set for hardwired control 

2. Put 1 in $1, 2 in $2, and 3 in $3

3. Use most instructions program. 

4. Note that ALU input and output registers are updated on clock at end of 
cycle!

5. Note that no need for delayed branch/jump - this has gone away for now, 
but will return when we get to pipelining!

VI.Controlling the Operation of the Data Paths - COVER AT START OF 
CONTROL UNIT LECTURE IF NECESSARY

A. In our discussion of how the various parts of the data portion of the CPU are built, 
we've noted that the specific operations performed are controlled by various bits 
of the control word.  Let's pull these all together.  It turns out that we need just 17 
control bits to control everything - all based on the content of the IR!

B. SWITCH DEMO TO MANUAL CONTROL, AND SHOW EACH

1. Three bits (shown as checkboxes on the simulation's manual input panel) 
disable/enable the loading of a particular register on a clock pulse.

a) One bit to control whether a register in the register set is loaded.  
(Often true on Cycle 3 - but not always)

b) One bit to control whether the IR is loaded.  (True only on Cycle 0)

c) One bit to control whether the PC is loaded. (True only on Cycle 0, 
but sometimes also elsewhere)
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d) The ALU input and output registers are always updated on every 
clock - ignored when not needed, so value loaded is irrelevant.

2. Two bits control whether a memory read or write is done (cannot both be 
true at the same time, of course - but often are both false).

3. One bit to control where the address of a memory location to be read or 
written comes from (the PC or a value calculated in the ALU).

4. Several bits control what is loaded into a given register.

a) 2  bits to control the updating of the PC (PC + 4, branch, or jump) - 
one possibility unused.

b) 1 bit to control the left source to the ALU (register specified by rs or 
PC)

c) 2 bits to control the right source to the ALU (register specified by rt or 
immediate constant or sign-extended immediate constant) - one 
possibility unused.

d) 1 bit to control where a new value to be loaded into a register comes 
comes from - the output of the ALU or memory.

5. 2 bits to control which register in the register set is loaded (determined by 
rd field of instruction, determined by the rt field,  or register 31 (required 
for JAL))

6. 3 bits to determine the operation performed in the ALU along with the 
funct field in the instruction.  (For the immediate instructions, the funct 
field in the instruction is actually part of the constant.)
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